Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Virol ; 56: 101272, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36242893

RESUMO

Herpesviruses, such as Epstein-Barr virus (EBV), encode multiple viral microRNAs that are expressed throughout various infection stages. While much progress has been made in evaluating both the viral and host microRNAs (miRNAs) that are detected during infection as well as elucidating their molecular targets in vitro, our understanding of their contributions to pathogenesis in vivo, viral oncogenesis, and clinical implications for these small molecules remains limited. miRNAs are widely recognized as key regulators of global cellular processes, including apoptosis, cell differentiation, and development of immune responses. This review discusses the roles of miRNAs in EBV infection and current advances in miRNA-based diagnostic and therapeutic strategies potentially applicable toward EBV-associated diseases.


Assuntos
Infecções por Vírus Epstein-Barr , MicroRNAs , Humanos , MicroRNAs/genética , Infecções por Vírus Epstein-Barr/diagnóstico , Infecções por Vírus Epstein-Barr/terapia , Herpesvirus Humano 4/genética , Carcinogênese , Diferenciação Celular , RNA Viral
2.
Comp Med ; 72(5): 287-297, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162961

RESUMO

HIV-infected people develop reproducible disruptions in their gastrointestinal microbiota. Despite the suppression of HIV viremia via long-term antiretroviral therapy (ART), alterations still occur in gut microbial diversity and the commensal microbiota. Mounting evidence suggests these microbial changes lead to the development of gut dysbiosis-persistent inflammation that damages the gut mucosa-and correlate with various immune defects. In this study, we examined how early ART intervention influences microbial diversity in SIV-infected rhesus macaques. Using 16S rRNA sequencing, we defined the fecal microbiome in macaques given daily ART beginning on either 3 or 7 d after SIV infection (dpi) and characterized changes in composition, α diversity, and ß diversity from before infection through 112 dpi. The dominant phyla in the fecal samples before infection were Bacteroidetes, Firmicutes, Spirochaetes, and Proteobacteria. After SIV infection and ART, the relative abundance of Firmicutes and Bacteroidetes did not change significantly. Significant reductions in α diversity occurred across time when ART was initiated at 3 dpi but not at 7 dpi. Principal coordinate analysis of samples revealed a divergence in ß diversity in both treatment groups after SIV infection, with significant differences depending on the timing of ART administration. These results indicate that although administration of ART at 3 or 7 dpi did not substantially alter fecal microbial composition, the timing of early ART measurably altered phylogenetic diversity.


Assuntos
Infecções por HIV , Microbiota , Síndrome de Imunodeficiência Adquirida dos Símios , Animais , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , RNA Ribossômico 16S/genética , Filogenia , Antirretrovirais/uso terapêutico , Antirretrovirais/farmacologia
3.
J Clin Invest ; 132(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35316218

RESUMO

Proliferation of latently infected CD4+ T cells with replication-competent proviruses is an important mechanism contributing to HIV persistence during antiretroviral therapy (ART). One approach to targeting this latent cell expansion is to inhibit mTOR, a regulatory kinase involved with cell growth, metabolism, and proliferation. Here, we determined the effects of chronic mTOR inhibition with rapamycin with or without T cell activation in SIV-infected rhesus macaques (RMs) on ART. Rapamycin perturbed the expression of multiple genes and signaling pathways important for cellular proliferation and substantially decreased the frequency of proliferating CD4+ memory T cells (TM cells) in blood and tissues. However, levels of cell-associated SIV DNA and SIV RNA were not markedly different between rapamycin-treated RMs and controls during ART. T cell activation with an anti-CD3LALA antibody induced increases in SIV RNA in plasma of RMs on rapamycin, consistent with SIV production. However, upon ART cessation, both rapamycin and CD3LALA-treated and control-treated RMs rebounded in less than 12 days, with no difference in the time to viral rebound or post-ART viral load set points. These results indicate that, while rapamycin can decrease the proliferation of CD4+ TM cells, chronic mTOR inhibition alone or in combination with T cell activation was not sufficient to disrupt the stability of the SIV reservoir.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos , Proliferação de Células , Infecções por HIV/tratamento farmacológico , Macaca mulatta/genética , RNA , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/farmacologia , Carga Viral , Replicação Viral
4.
J Virol ; 96(4): e0149521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34878852

RESUMO

Suppression of lytic viral gene expression is a key aspect of the Epstein-Barr virus (EBV) life cycle to facilitate the establishment of latent infection. Molecular mechanisms regulating transitions between EBV lytic replication and latency are not fully understood. Here, we investigated the impact of viral microRNAs on the EBV lytic cycle. Through functional assays, we found that miR-BHRF1-3 attenuates EBV lytic gene expression following reactivation. To understand the miRNA targets contributing to this activity, we performed Ago PAR-CLIP analysis on EBV-positive, reactivated Burkitt's lymphoma cells and identified multiple miR-BHRF1-3 interactions with viral transcripts. Using luciferase reporter assays, we confirmed a miRNA interaction site within the 3'UTR of BZLF1 which encodes the essential immediate early (IE) transactivator Zta. Comparison of >850 published EBV genomes identified sequence polymorphisms within the miR-BHRF1-3 locus that deleteriously affect miRNA expression and function. Molecular interactions between the homologous viral miRNA, miR-rL1-17, and IE transcripts encoded by rhesus lymphocryptovirus were further identified. Our data demonstrate that regulation of IE gene expression by a BHRF1 miRNA is conserved among lymphocryptoviruses, and further reveal virally-encoded genetic elements that orchestrate viral antigen expression during the lytic cycle. IMPORTANCE Epstein-Barr virus infection is predominantly latent in healthy individuals, while periodic cycles of reactivation are thought to facilitate persistent lifelong infection. Lytic infection has been linked to development of certain EBV-associated diseases. Here, we demonstrate that EBV miR-BHRF1-3 can suppress lytic replication by directly inhibiting Zta expression. Moreover, we identify nucleotide variants that impact the function of miR-BHRF1-3, which may contribute to specific EBV pathologies.


Assuntos
Herpesvirus Humano 4/genética , MicroRNAs/genética , Transativadores/genética , Ativação Viral/genética , Regiões 3' não Traduzidas , Regulação Viral da Expressão Gênica , Inativação Gênica , Variação Genética , Células HEK293 , Herpesvirus Humano 4/fisiologia , Humanos , Proteínas Imediatamente Precoces/genética , Lymphocryptovirus/genética , RNA Mensageiro/genética , RNA Viral/genética
5.
mSphere ; 6(2)2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853871

RESUMO

Antigen recognition by the B cell receptor (BCR) is a physiological trigger for reactivation of Epstein-Barr virus (EBV) and can be recapitulated in vitro by cross-linking of surface immunoglobulins. Previously, we identified a subset of EBV microRNAs (miRNAs) that attenuate BCR signal transduction and subsequently dampen lytic reactivation in B cells. The roles of host miRNAs in the EBV lytic cycle are not completely understood. Here, we profiled the small RNAs in reactivated Burkitt lymphoma cells and identified several miRNAs, such as miR-141, that are induced upon BCR cross-linking. Notably, EBV encodes a viral miRNA, miR-BART9, with sequence homology to miR-141. To better understand the functions of these two miRNAs, we examined their molecular targets and experimentally validated multiple candidates commonly regulated by both miRNAs. Targets included B cell transcription factors and known regulators of EBV immediate-early genes, leading us to hypothesize that these miRNAs modulate kinetics of the lytic cascade in B cells. Through functional assays, we identified roles for miR-141 and EBV miR-BART9 and one specific target, FOXO3, in progression of the lytic cycle. Our data support a model whereby EBV exploits BCR-responsive miR-141 and further mimics activity of this miRNA family via a viral miRNA to promote productive lytic replication.IMPORTANCE EBV is a human pathogen associated with several malignancies. A key aspect of lifelong virus persistence is the ability to switch between latent and lytic replication modes. The mechanisms governing latency, reactivation, and progression of the lytic cycle are only partly understood. This study reveals that specific miRNAs can act to support the EBV lytic phase following BCR-mediated reactivation triggers. Furthermore, this study identifies a role for FOXO3, commonly suppressed by both host and viral miRNAs, in modulating progression of the EBV lytic cycle.


Assuntos
Proteína Forkhead Box O3/antagonistas & inibidores , Proteína Forkhead Box O3/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , MicroRNAs/genética , MicroRNAs/imunologia , Receptores de Antígenos de Linfócitos B/genética , Ativação Viral/imunologia , Linfócitos B/imunologia , Linfócitos B/virologia , Linhagem Celular , Proteína Forkhead Box O3/imunologia , Células HEK293 , Herpesvirus Humano 4/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Ativação Viral/genética , Fenômenos Fisiológicos Virais
6.
Pathogens ; 10(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668486

RESUMO

Human cytomegalovirus (HCMV) encodes 22 mature microRNAs (miRNAs), which regulate a myriad of cellular processes, including vesicular trafficking, cell cycle progression, apoptosis, and immune evasion, as well as viral gene expression. Recent evidence points to a critical role for HCMV miRNAs in mediating latency in CD34+ hematopoietic progenitor cells through modulation of cellular signaling pathways, including attenuation of TGFß and EGFR signaling. Moreover, HCMV miRNAs can act in concert with, or in opposition to, viral proteins in regulating host cell functions. Here, we comprehensively review the studies of HCMV miRNAs in the context of latency and highlight the novel processes that are manipulated by the virus using these small non-coding RNAs.

7.
mBio ; 12(2)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785626

RESUMO

Epstein-Barr virus (EBV), a human herpesvirus, encodes 44 microRNAs (miRNAs), which regulate many genes with various functions in EBV-infected cells. Multiple target genes of the EBV miRNAs have been identified, some of which play important roles in adaptive antiviral immune responses. Using EBV mutant derivatives, we identified additional roles of viral miRNAs in governing versatile type I interferon (IFN) responses upon infection of human primary mature B cells. We also found that Epstein-Barr virus-encoded small RNAs (EBERs) and LF2, viral genes with previously reported functions in inducing or regulating IFN-I pathways, had negligible or even contrary effects on secreted IFN-α in our model. Data mining and Ago PAR-CLIP experiments uncovered more than a dozen previously uncharacterized, direct cellular targets of EBV miRNA associated with type I IFN pathways. We also identified indirect targets of EBV miRNAs in B cells, such as TRL7 and TLR9, in the prelatent phase of infection. The presence of epigenetically naive, non-CpG methylated viral DNA was essential to induce IFN-α secretion during EBV infection in a TLR9-dependent manner. In a newly established fusion assay, we verified that EBV virions enter a subset of plasmacytoid dendritic cells (pDCs) and determined that these infected pDCs are the primary producers of IFN-α in EBV-infected peripheral blood mononuclear cells. Our findings document that many EBV-encoded miRNAs regulate type I IFN response in newly EBV infected primary human B cells in the prelatent phase of infection and dampen the acute release of IFN-α in pDCs upon their encounter with EBV.IMPORTANCE Acute antiviral functions of all nucleated cells rely on type I interferon (IFN-I) pathways triggered upon viral infection. Host responses encompass the sensing of incoming viruses, the activation of specific transcription factors that induce the transcription of IFN-I genes, the secretion of different IFN-I types and their recognition by the heterodimeric IFN-α/ß receptor, the subsequent activation of JAK/STAT signaling pathways, and, finally, the transcription of many IFN-stimulated genes (ISGs). In sum, these cellular functions establish a so-called antiviral state in infected and neighboring cells. To counteract these cellular defense mechanisms, viruses have evolved diverse strategies and encode gene products that target antiviral responses. Among such immune-evasive factors are viral microRNAs (miRNAs) that can interfere with host gene expression. We discovered that multiple miRNAs of Epstein-Barr virus (EBV) control over a dozen cellular genes that contribute to the antiviral states of immune cells, specifically B cells and plasmacytoid dendritic cells (pDCs). We identified the viral DNA genome as the activator of IFN-α and question the role of abundant EBV EBERs, that, contrary to previous reports, do not have an apparent inducing function in the IFN-I pathway early after infection.


Assuntos
Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Interferon-alfa/metabolismo , Interferon beta/metabolismo , MicroRNAs/metabolismo , RNA Viral/metabolismo , Linfócitos B/metabolismo , Linfócitos B/virologia , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/genética , Interações Hospedeiro-Patógeno , Humanos , Interferon-alfa/genética , Interferon beta/genética , MicroRNAs/genética , RNA Viral/genética , Transdução de Sinais , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo
8.
Methods Mol Biol ; 2244: 301-342, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33555594

RESUMO

microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level by binding to sites within the 3' untranslated regions of messenger RNA (mRNA) transcripts. The discovery of this completely new mechanism of gene regulation necessitated the development of a variety of techniques to further characterize miRNAs, their expression, and function. In this chapter, we will discuss techniques currently used in the miRNA field to detect, express and inhibit miRNAs, as well as methods used to identify and validate their targets, specifically with respect to the miRNAs encoded by human cytomegalovirus.


Assuntos
Citomegalovirus/genética , Imunoprecipitação/métodos , MicroRNAs/análise , Regiões 3' não Traduzidas/genética , Northern Blotting/métodos , Expressão Gênica/genética , Regulação Viral da Expressão Gênica/genética , Humanos , MicroRNAs/genética , RNA Mensageiro/genética
9.
J Immunol ; 203(11): 2928-2943, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31653683

RESUMO

Although IL-15 has been implicated in the pathogenic hyperimmune activation that drives progressive HIV and SIV infection, as well as in the generation of HIV/SIV target cells, it also supports NK and T cell homeostasis and effector activity, potentially benefiting the host. To understand the role of IL-15 in SIV infection and pathogenesis, we treated two cohorts of SIVmac239-infected rhesus macaques (RM; Macaca mulatta), one with chronic infection, the other with primary infection, with a rhesusized, IL-15-neutralizing mAb (versus an IgG isotype control) for up to 10 wk (n = 7-9 RM per group). In both cohorts, anti-IL-15 was highly efficient at blocking IL-15 signaling in vivo, causing 1) profound depletion of NK cells in blood and tissues throughout the treatment period; 2) substantial, albeit transient, depletion of CD8+ effector memory T cells (TEM) (but not the naive and central memory subsets); and 3) CD4+ and CD8+ TEM hyperproliferation. In primary infection, reduced frequencies of SIV-specific effector T cells in an extralymphoid tissue site were also observed. Despite these effects, the kinetics and extent of SIV replication, CD4+ T cell depletion, and the onset of AIDS were comparable between anti-IL-15- and control-treated groups in both cohorts. However, RM treated with anti-IL-15 during primary infection manifested accelerated reactivation of RM rhadinovirus. Thus, IL-15 support of NK cell and TEM homeostasis does not play a demonstrable, nonredundant role in SIV replication or CD4+ T cell deletion dynamics but may contribute to immune control of oncogenic γ-herpesviruses.


Assuntos
Interleucina-15/imunologia , Macaca mulatta/imunologia , Transdução de Sinais/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Feminino , Masculino , Vírus da Imunodeficiência Símia/patogenicidade
10.
PLoS Pathog ; 15(1): e1007535, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615681

RESUMO

MicroRNAs (miRNAs) are post-transcriptional regulatory RNAs that can modulate cell signaling and play key roles in cell state transitions. Epstein-Barr virus (EBV) expresses >40 viral miRNAs that manipulate both viral and cellular gene expression patterns and contribute to reprogramming of the host environment during infection. Here, we identified a subset of EBV miRNAs that desensitize cells to B cell receptor (BCR) stimuli, and attenuate the downstream activation of NF-kappaB or AP1-dependent transcription. Bioinformatics and pathway analysis of Ago PAR-CLIP datasets identified multiple EBV miRNA targets related to BCR signal transduction, including GRB2, SOS1, MALT1, RAC1, and INPP5D, which we validated in reporter assays. BCR signaling is critical for B cell activation, proliferation, and differentiation, and for EBV, is linked to reactivation. In functional assays, we demonstrate that EBV miR-BHRF1-2-5p contributes to the growth of latently infected B cells through GRB2 regulation. We further determined that activities of EBV miR-BHRF1-2-5p, EBV miR-BART2-5p, and a cellular miRNA, miR-17-5p, directly regulate virus reactivation triggered by BCR engagement. Our findings provide mechanistic insight into some of the key miRNA interactions impacting the proliferation of latently infected B cells and importantly, governing the latent to lytic switch.


Assuntos
Proteína Adaptadora GRB2/metabolismo , Herpesvirus Humano 4/genética , Receptores de Antígenos de Linfócitos B/fisiologia , Linfócitos B/virologia , Linhagem Celular , Infecções por Vírus Epstein-Barr/virologia , Proteína Adaptadora GRB2/fisiologia , Regulação Viral da Expressão Gênica/genética , Células HEK293 , Herpesvirus Humano 4/imunologia , Humanos , MicroRNAs/genética , NF-kappa B/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais , Proteínas Virais/metabolismo , Latência Viral/genética
11.
Curr Top Microbiol Immunol ; 419: 243-280, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28674945

RESUMO

Non-coding RNAs (ncRNAs) play essential roles in multiple aspects of the life cycles of herpesviruses and contribute to lifelong persistence of herpesviruses within their respective hosts. In this chapter, we discuss the types of ncRNAs produced by the different herpesvirus families during infection, some of the cellular ncRNAs manipulated by these viruses, and the overall contributions of ncRNAs to the viral life cycle, influence on the host environment, and pathogenesis.


Assuntos
Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesviridae/genética , Herpesviridae/fisiologia , Interações Hospedeiro-Patógeno/genética , RNA não Traduzido/genética , Herpesviridae/patogenicidade , Humanos , RNA Viral/genética
12.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794034

RESUMO

Epstein-Barr virus (EBV) encodes >44 viral microRNAs (miRNAs) that are differentially expressed throughout infection, can be detected in Epstein-Barr virus (EBV)-positive tumors, and manipulate several biological processes, including cell proliferation, apoptosis, and immune responses. Here, we show that EBV BHRF1-2 miRNAs block NF-κB activation following treatment with proinflammatory cytokines, specifically interleukin-1ß (IL-1ß). Analysis of EBV PAR-CLIP miRNA targetome data sets combined with pathway analysis revealed multiple BHRF1-2 miRNA targets involved in interleukin signaling pathways. By further analyzing changes in cellular gene expression patterns, we identified the IL-1 receptor 1 (IL1R1) as a direct target of miR-BHRF1-2-5p. Targeting the IL1R1 3' untranslated region (UTR) by EBV miR-BHRF1-2-5p was confirmed using 3'-UTR luciferase reporter assays and Western blot assays. Manipulation of EBV BHRF1-2 miRNA activity in latently infected B cells altered steady-state cytokine levels and disrupted IL-1ß responsiveness. These studies demonstrate functionally relevant BHRF1-2 miRNA interactions during EBV infection, which is an important step in understanding their roles in pathogenesis.IMPORTANCE IL-1 signaling plays an important role in inflammation and early activation of host innate immune responses following virus infection. Here, we demonstrate that a viral miRNA downregulates the IL-1 receptor 1 during EBV infection, which consequently alters the responsiveness of cells to IL-1 stimuli and changes the cytokine expression levels within infected cell populations. We postulate that this viral miRNA activity not only disrupts IL-1 autocrine and paracrine signaling loops that can alert effector cells to sites of infection but also provides a survival advantage by dampening excessive inflammation that may be detrimental to the infected cell.


Assuntos
Linfócitos B/virologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Interleucina-1beta/antagonistas & inibidores , MicroRNAs/genética , Receptores de Interleucina-1/antagonistas & inibidores , Proteínas Virais/metabolismo , Regiões 3' não Traduzidas , Células Cultivadas , Regulação Viral da Expressão Gênica , Células HEK293 , Humanos , Interleucina-1beta/metabolismo , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Latência Viral
13.
Methods Mol Biol ; 1532: 133-146, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27873272

RESUMO

MicroRNAs are small, noncoding RNAs that posttranscriptionally regulate gene expression. The discovery of this relatively new mode of gene regulation as well as studies showing the prognostic value of viral and cellular miRNAs as biomarkers, such as in cancer progression, has stimulated the development of many methods to characterize miRNAs. EBV encodes 25 viral precursor microRNAs within its genome that are expressed during lytic and latent infection. In addition to viral miRNAs, EBV infection induces the expression of specific cellular oncogenic miRNAs, such as miR-155, miR-146a, miR-21, and others, that can contribute to the persistence of latently infected cells. This chapter describes several current techniques used to identify and detect the expression of viral and cellular miRNAs in EBV-infected cells.


Assuntos
Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Regulação da Expressão Gênica , Herpesvirus Humano 4/genética , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , RNA Viral/genética , Genes Reporter , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Família Multigênica , Reação em Cadeia da Polimerase em Tempo Real
14.
J Virol ; 90(20): 9350-63, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27512057

RESUMO

UNLABELLED: Japanese macaque (JM) rhadinovirus (JMRV) is a novel, gamma-2 herpesvirus that was recently isolated from JM with inflammatory demyelinating encephalomyelitis (JME). JME is a spontaneous and chronic disease with clinical characteristics and immunohistopathology comparable to those of multiple sclerosis in humans. Little is known about the molecular biology of JMRV. Here, we sought to identify and characterize the small RNAs expressed during lytic JMRV infection using deep sequencing. Fifteen novel viral microRNAs (miRNAs) were identified in JMRV-infected fibroblasts, all of which were readily detectable by 24 h postinfection and accumulated to high levels by 72 h. Sequence comparisons to human Kaposi's sarcoma-associated herpesvirus (KSHV) miRNAs revealed several viral miRNA homologs. To functionally characterize JMRV miRNAs, we screened for their effects on nuclear factor kappa B (NF-κB) signaling in the presence of two proinflammatory cytokines, tumor necrosis factor alpha (TNF-α) and interleukin-1ß (IL-1ß). Multiple JMRV miRNAs suppressed cytokine-induced NF-κB activation. One of these miRNAs, miR-J8, has seed sequence homology to members of the cellular miR-17/20/106 and miR-373 families, which are key players in cell cycle regulation as well as inflammation. Using reporters, we show that miR-J8 can target 3' untranslated regions (UTRs) with miR-17-5p or miR-20a cognate sites. Our studies implicate JMRV miRNAs in the suppression of innate antiviral immune responses, which is an emerging feature of many viral miRNAs. IMPORTANCE: Gammaherpesviruses are associated with multiple diseases linked to immunosuppression and inflammation, including AIDS-related cancers and autoimmune diseases. JMRV is a recently identified herpesvirus that has been linked to JME, an inflammatory demyelinating disease in Japanese macaques that mimics multiple sclerosis. There are few large-animal models for gammaherpesvirus-associated pathogenesis. Here, we provide the first experimental evidence of JMRV miRNAs in vitro and demonstrate that one of these viral miRNAs can mimic the activity of the cellular miR-17/20/106 family. Our work provides unique insight into the roles of viral miRNAs during rhadinovirus infection and provides an important step toward understanding viral miRNA function in a nonhuman primate model system.


Assuntos
Macaca/virologia , MicroRNAs/genética , RNA Viral/genética , Rhadinovirus/genética , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Linhagem Celular , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/virologia , Encefalomielite/genética , Encefalomielite/virologia , Perfilação da Expressão Gênica/métodos , Células HEK293 , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Interleucina-1beta/genética , Japão , NF-kappa B/genética , Homologia de Sequência , Fator de Necrose Tumoral alfa/genética
15.
Curr Top Microbiol Immunol ; 391: 181-217, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26428375

RESUMO

EBV expresses a number of viral noncoding RNAs (ncRNAs) during latent infection, many of which have known regulatory functions and can post-transcriptionally regulate viral and/or cellular gene expression. With recent advances in RNA sequencing technologies, the list of identified EBV ncRNAs continues to grow. EBV-encoded RNAs (EBERs) , the BamHI-A rightward transcripts (BARTs) , a small nucleolar RNA (snoRNA) , and viral microRNAs (miRNAs) are all expressed during EBV infection in a variety of cell types and tumors. Recently, additional novel EBV ncRNAs have been identified. Viral miRNAs, in particular, have been under extensive investigation since their initial identification over ten years ago. High-throughput studies to capture miRNA targets have revealed a number of miRNA-regulated viral and cellular transcripts that tie into important biological networks. Functions for many EBV ncRNAs are still unknown; however, roles for many EBV miRNAs in latency and in tumorigenesis have begun to emerge. Ongoing mechanistic studies to elucidate the functions of EBV ncRNAs should unravel additional roles for ncRNAs in the viral life cycle. In this chapter, we will discuss our current knowledge of the types of ncRNAs expressed by EBV, their potential roles in viral latency, and their potential involvement in viral pathogenesis.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/metabolismo , RNA não Traduzido/metabolismo , RNA Viral/metabolismo , Animais , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/química , Herpesvirus Humano 4/genética , Humanos , RNA não Traduzido/química , RNA não Traduzido/genética , RNA Viral/química , RNA Viral/genética
16.
PLoS Pathog ; 11(6): e1004979, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26070070

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus that can give rise to cancers of both B-cell and epithelial cell origin. In EBV-induced cancers of epithelial origin, including nasopharyngeal carcinomas (NPCs) and gastric carcinomas, the latent EBV genome expresses very high levels of a cluster of 22 viral pre-miRNAs, called the miR-BARTs, and these have previously been shown to confer a degree of resistance to pro-apoptotic drugs. Here, we present an analysis of the ability of individual miR-BART pre-miRNAs to confer an anti-apoptotic phenotype and report that five of the 22 miR-BARTs demonstrate this ability. We next used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) to globally identify the mRNA targets bound by these miR-BARTs in latently infected epithelial cells. This led to the identification of ten mRNAs encoding pro-apoptotic mRNA targets, all of which could be confirmed as valid targets for the five anti-apoptotic miR-BARTs by indicator assays and by demonstrating that ectopic expression of physiological levels of the relevant miR-BART in the epithelial cell line AGS resulted in a significant repression of the target mRNA as well as the encoded protein product. Using RNA interference, we further demonstrated that knockdown of at least seven of these cellular miR-BART target transcripts phenocopies the anti-apoptotic activity seen upon expression of the relevant EBV miR-BART miRNA. Together, these observations validate previously published reports arguing that the miR-BARTs can exert an anti-apoptotic effect in EBV-infected epithelial cells and provide a mechanistic explanation for this activity. Moreover, these results identify and validate a substantial number of novel mRNA targets for the anti-apoptotic miR-BARTs.


Assuntos
Infecções por Vírus Epstein-Barr/genética , Evasão da Resposta Imune/genética , MicroRNAs/genética , RNA Viral/genética , Latência Viral/genética , Apoptose/genética , Western Blotting , Linhagem Celular , Resistência a Medicamentos/genética , Herpesvirus Humano 4/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoprecipitação , Reação em Cadeia da Polimerase , Interferência de RNA , Análise de Sequência de RNA , Transfecção
17.
J Virol ; 88(14): 8065-76, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24807715

RESUMO

The issue of whether viruses are subject to restriction by endogenous microRNAs (miRNAs) and/or by virus-induced small interfering RNAs (siRNAs) in infected human somatic cells has been controversial. Here, we address this question in two ways. First, using deep sequencing, we demonstrate that infection of human cells by the RNA virus dengue virus (DENV) or West Nile virus (WNV) does not result in the production of any virus-derived siRNAs or viral miRNAs. Second, to more globally assess the potential of small regulatory RNAs to inhibit virus replication, we used gene editing to derive human cell lines that lack a functional Dicer enzyme and that therefore are unable to produce miRNAs or siRNAs. Infection of these cells with a wide range of viruses, including DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus, measles virus, influenza A virus, reovirus, vesicular stomatitis virus, human immunodeficiency virus type 1, or herpes simplex virus 1 (HSV-1), failed to reveal any enhancement in the replication of any of these viruses, although HSV-1, which encodes at least eight Dicer-dependent viral miRNAs, did replicate somewhat more slowly in the absence of Dicer. We conclude that most, and perhaps all, human viruses have evolved to be resistant to inhibition by endogenous human miRNAs during productive replication and that dependence on a cellular miRNA, as seen with hepatitis C virus, is rare. How viruses have evolved to avoid inhibition by endogenous cellular miRNAs, which are generally highly conserved during metazoan evolution, remains to be determined. Importance: Eukaryotic cells express a wide range of small regulatory RNAs, including miRNAs, that have the potential to inhibit the expression of mRNAs that show sequence complementarity. Indeed, previous work has suggested that endogenous miRNAs have the potential to inhibit viral gene expression and replication. Here, we demonstrate that the replication of a wide range of pathogenic viruses is not enhanced in human cells engineered to be unable to produce miRNAs, indicating that viruses have evolved to be resistant to inhibition by miRNAs. This result is important, as it implies that manipulation of miRNA levels is not likely to prove useful in inhibiting virus replication. It also focuses attention on the question of how viruses have evolved to resist inhibition by miRNAs and whether virus mutants that have lost this resistance might prove useful, for example, in the development of attenuated virus vaccines.


Assuntos
Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , MicroRNAs/genética , MicroRNAs/imunologia , Replicação Viral , Vírus/genética , Vírus/imunologia , Animais , Linhagem Celular , Inativação Gênica , Humanos , Vírus/crescimento & desenvolvimento
19.
Nucleic Acids Res ; 42(7): 4629-39, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24464996

RESUMO

It has previously been assumed that the generally high stability of microRNAs (miRNAs) reflects their tight association with Argonaute (Ago) proteins, essential components of the RNA-induced silencing complex (RISC). However, recent data have suggested that the majority of mature miRNAs are not, in fact, Ago associated. Here, we demonstrate that endogenous human miRNAs vary widely, by >100-fold, in their level of RISC association and show that the level of Ago binding is a better indicator of inhibitory potential than is the total level of miRNA expression. While miRNAs of closely similar sequence showed comparable levels of RISC association in the same cell line, these varied between different cell types. Moreover, the level of RISC association could be modulated by overexpression of complementary target mRNAs. Together, these data indicate that the level of RISC association of a given endogenous miRNA is regulated by the available RNA targetome and predicts miRNA function.


Assuntos
MicroRNAs/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Proteínas Argonautas/metabolismo , Linhagem Celular , Humanos , RNA Mensageiro/metabolismo
20.
J Virol ; 88(3): 1617-35, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24257599

RESUMO

Epstein-Barr virus (EBV) and rhesus lymphocryptovirus (rLCV) are closely related gammaherpesviruses in the lymphocryptovirus subgroup that express viral microRNAs (miRNAs) during latent infection. In addition to many host mRNAs, EBV miRNAs are known to target latent viral transcripts, specifically those encoding LMP1, BHRF1, and EBNA2. The mRNA targets of rLCV miRNAs have not been investigated. Using luciferase reporter assays, photoactivatable cross-linking and immunoprecipitation (PAR-CLIP), and deep sequencing, we demonstrate that posttranscriptional regulation of LMP1 expression is a conserved function of lymphocryptovirus miRNAs. Furthermore, the mRNAs encoding the rLCV EBNA2 and BHRF1 homologs are regulated by miRNAs in rLCV-infected B cells. Homologous to sites in the EBV LMP1 and BHRF1 3'-untranslated regions (UTRs), we also identified evolutionarily conserved binding sites for the cellular miR-17/20/106 family in the LMP1 and BHRF1 3'UTRs of several primate LCVs. Finally, we investigated the functional consequences of LMP1 targeting by individual EBV BART miRNAs and show that select viral miRNAs play a role in the previously observed modulation of NF-κB activation.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Evolução Molecular , Regulação Viral da Expressão Gênica , Lymphocryptovirus/genética , MicroRNAs/genética , Doenças dos Primatas/virologia , RNA Viral/genética , Proteínas Virais/genética , Animais , Sequência de Bases , Herpesvirus Humano 4/química , Herpesvirus Humano 4/classificação , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Lymphocryptovirus/química , Lymphocryptovirus/classificação , Lymphocryptovirus/metabolismo , Macaca mulatta , MicroRNAs/química , MicroRNAs/metabolismo , Dados de Sequência Molecular , Primatas , RNA Viral/química , RNA Viral/metabolismo , Alinhamento de Sequência , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...